致态TiPlus7100成功的奥义:长江存储晶栈Xtacking架构解析
今年秋季,Intel和AMD最新平台发售,固态硬盘也全面开启PCIe Gen4时代。11月 日国内存储品牌致态发布了重量级的PCIe Gen4新品致态TiPlus7100,该产品最大的亮点就是采用YMTC长江存储最新的晶栈?Xtacking?3.0架构NAND,最高连续读写性能达到了7000MB/s和6000MB/s,堪称是DRAMLess产品的绝地反击。
为何晶栈?Xtacking3.0?架构有如此亮眼的表现?在讨论Xtacking之前,我们先简单了解一下固态硬盘核心组件——NAND FLASH的内部结构。
01 从2D NAND到3D NAND
NAND的容量大小取决于晶圆上存储阵列Array中可存放最小存储单元Cell的数量。对于早期的Planar NAND平面NAND(也叫2D NAND)来说,为了进一步提升存储容量和降低成本,就需要更先进的制程工艺,但制程工艺越高,晶圆的氧化层越薄,性能和可靠性都会出现下降,因此3D NAND开始成为主流。
所谓3D NAND就是相对于Planar NAND而言的,在晶圆上采用多层堆叠设计,如果把Planar NAND比喻成平房,那么3D NAND就是高楼大厦,提升NAND的容量只需堆叠更多层数的Array,使得容量、性能和可靠性都得到了保证。目前的3D TLC NAND已经到达100层以上,单颗NAND更是实现了1TB的容量。
02 NAND的架构
虽然3D NAND的概念比较容易理解,但落实到生产层面就不是单纯的叠层这么简单,这就涉及到NAND架构的问题。从全球主流的全球主流存储厂商出品的NAND横截面图可知,三星、铠侠和西部数据采用常规的并列式架构,将控制数据读取、写入的外围CMOS线路放在Array下方,只是技术层面有所不同。
例如三星V-NAND系列NAND,采用一次性加工、内存孔(Memory Hole)HARC蚀刻技术,铠侠/西部数据BiCS NAND则采用两个48层堆叠。并列式架构的优势是加工难度相对较低,但对于晶圆蚀刻设备和技术有着较高的要求。
Intel/Micron以及SK海力士则另辟蹊径采用了CuA(CMOS under Array)架构,这是一种将CMOS线路放置在Array以下的加工方式,从而增大了Array的面积。CuA架构的优势是能扩大单个芯片的存储密度,但同样存在制造工艺难度较高的问题。
而YMTC长江存储采用的是独家的?Xtacking?3.0架构,将CMOS线路用一种不同于存储核心Array的晶圆制造而成,分别通过Bonding工艺进行贴合,在指甲盖大小的面积的晶圆上通过数十亿根金属通道,将CMOS和Array进行连接,合二为一。
03 长江存储Xtacking?架构解析
从原理看,YMTC长江存储的晶栈?Xtacking?架构是两片独立的晶圆上,分别加工外围电路和存储单元,在逻辑工艺上有着更多的自主选择性,从而让NAND获取更多的I/O通道、更高的接口速度,例如最新的晶栈?Xtacking?3.0架构NAND具备四闪存通道和高达2400MT/s的接口带宽,这也是致态TiPlus7100即使采用DRAMLess方案,也能实现7000MB/s和6000MB/s的核心要义。
3D NAND颗粒最重要的发展方向是存储密度的优化。在传统3D NAND架构中,外围CMOS电路约占芯片面积20~30%,而Xtacking?技术创新的将外围电路置于存储单元之上,从而实现比传统3D NAND更高的存储密度,芯片面积可减少约25%,同等面积基础上,Xtacking?架构能够提供更多的存储单元,成为长江存储旗下致态品牌固态硬盘足容量的保证。
除了容量、性能和成本,NAND颗粒的良品率和出货量也是市场竞争的重要一环。自Xtacking?2.0技术诞生以来,长江存储NAND的良品率大幅度跃升,充分满足长江存储自有存储产品和客户供货的需求。除此之外,Xtacking?工艺存储单元和外围CMOS线路独立加工的特性,可以实现并行和模组化的灵活生产,较于传统结构产品研发周期可缩短三个月,生产周期可缩短20%,使得长江存储NAND的出货量也得到大幅提升。
作为长江存储核心技术品牌,晶栈Xtacking?代表着长江存储在3D NAND存储技术领域的创新进取和卓越贡献。经过9年技术积累和4年技术验证,晶栈Xtacking?架构NAND不仅性能和可靠性均达到了国际水准,更拥有较高的存储密度和更灵活的开发周期,这也是致态品牌SSD产品成功的奥义所在。
(8088368)
232层3D闪存芯片来了:单片容量2TB,传输速度提高50%
Pine 发自 凹非寺
量子位 | 公众号 QbitAI
232 层的3D闪存芯片来了,数据传输速率提高50%,容量可达2TB。
美光继上次抢先推出176层3D NAND后,近日又率先推出全球首款232层NAND。
△图源美光科技
说起来,跟NAND层数较劲这事儿,并不是美光一家在做。
比如美光的老对手三星,相关研究中心也聚焦在层数上:此前,三星曾抢先业界公布了第八代V-NAND的细节,堆栈层数超过200层。
所以这样“堆高高”,究竟能给芯片性能带来多大的提升?
堆栈层数就像盖楼房
层数越高,NAND闪存可具有的容量就越大。
可以做这样一个简单的比喻:
在一个人满为患的城市,这里的房地产价格昂贵,向外扩展成本很大,唯一的办法是通过增加楼层以支持不断增长的人口,这里的楼层就相当于NAND层。
同样的,停车场和一些基础设施主要位于建筑物下方,以提高空间效率,这相当于最底下的CMOS层。
将NAND的位单元阵列堆叠到更多层中,可在每平方毫米硅片上提供更多存储位,从而实现更高的密度和更低的成本。
3D NAND把解决思路从单纯提高制程工艺转变为堆叠多层,成功解决了平面NAND在增加容量的同时性能降低的问题,实现容量、速度、能效及可靠性等全方位提升。
△图源美光科技
和三星等其他竞争芯片相比,美光新的技术将每单位面积存储的比特密度提高了一倍,每平方毫米封装14.6Gb。
它的1TB芯片被捆绑在2TB的封装中,每个封装的边长都不超过一厘米,可以存储大约两周时长的4K视频。
此外,美光还对芯片的最底层进行了改进,最底下的CMOS层由逻辑和其他电路组成,这些电路负责控制读写操作以及尽可能快速有效地在芯片内外获取数据。
美光优化了其数据传输路径,降低芯片输入和输出的电容,将数据传输速率提高了50%,达到2.4Gb/s。
层数的较量
自从NAND 闪存进入3D时代,堆栈层数犹如摩天大楼一样越来越高,从最初的24/32层一路堆到了现在的176层甚至232层。
层数的较量是整个行业的竞争,三星、美光、SK海力士等企业都致力于层数的突破。
三星是NAND闪存的龙头企业,3D NAND就源于三星。
2013年,三星设计了一种垂直堆叠单元的方法,它将单元集中在单个楼层(类似高层公寓)上,这也是全球首个3D单元结构“V-NAND”,当年可以实现24层堆叠。
此后,三星不断更新技术和扩增产业线,10年间推出了7代产品,以维护自己在NAND闪存市场的地位。
2020年,三星推出了176层的第七代“V-NAND”,它采用了“双堆栈”技术,不是一次性蚀刻所有层,而是将它们分成两部分,然后一层一层堆叠。
因此,第七代V-NAND相较于与第六代的100层,其单元体积减少了35%,它可以在不增加高度的情况下将层数增加到176,同时还可以降低功耗,使效率提高16%。
不过,虽然三星曾抢先公布了第八代V-NAND的细节,称其堆栈层数会超过200层,但这回率先量产200+层闪存的却是美光。
值得一提的是,在此次美光发布的232层3D闪存芯片中,NAND的堆栈技术并不是首创,而是与三星第七代一样采用“双堆栈”技术。
也就是说,将232层分成两部分,每个部分116层,这些层的堆叠是从一个深而窄的孔开始,通过导体和绝缘体的交替层蚀刻。
然后用材料填充孔并加工形成器件的比特存储部分。蚀刻和填充穿过所有这些层的孔的能力是该技术的关键限制。
△图注:图源美光科技
目前,国产芯片企业长江存储的第三代QLC 3D NAND闪存实现了128层堆叠。
对于层数的较量,网友也抱有很乐观的态度:
增加层数几乎不会带来新的问题。
参考链接:[1] https://spectrum.ieee.org/micron-is-first-to-deliver-3d-flash-chips-with-more-than-200-layers[2] https://news.ycombinator.com/item?id=32243862[3] https://ee.ofweek.com/2021-12/ART-8320315-8110-30538953.html
— 完 —
量子位 QbitAI · 头条号签约
关注我们,第一时间获知前沿科技动态
相关问答
存储 行业龙头排名?成立于1987年,是全球第一家专业积体电路制造服务(晶圆代工foundry)企业,总部与主要工厂位于中国台湾省新竹市科学园区。台湾积体电路制造股份有限公司,中文简...
不懂就问,为什么手机后期元件成本会下降 - 懂得小米系列,屏幕用夏普(和iPhone,华为,中兴,HTC等相同),NAND用的海力士和三星(和iPhone(东芝,海力士,三星),三星,HTC,索尼,华为等相同),摄像头用的索...
还有别的那些缩写?我知道HC:是highCMOS呵呵,我肯定是没有...[回答]74HCSeriesHighSpeedCMOSLogicFamilyHC是高速COMS逻辑类它的逻辑电平和CMOS电路相同.74LSSeriesLowPowerSchottkyLog...
存储 器的编制单位是什么?是,SRAM和NANDflush基本构成单位是4个与非门(NAND)组成的(DFF)D触发器,DDR同样是由特殊的双触发主从DFF构成时钟触发锁存和刷新时钟触发刷新.DFF的基本构成单...
美光是哪个国家的公司?是美国的公司。美光是全球最大的半导体储存及影像产品制造商之一,其主要产品包括DRAM、NAND闪存、NOR闪存、SSD固态硬盘和CMOS影像传感器,总公司(MicronTech...
谁能详细介绍一下芯片的设计,制造和封测技术?芯片的设计,制造,封测每一个环节都有非常复杂的流程。尽量以图片和通俗概念介绍。首先,设计要有芯片要实现的规格目标,确定好设计目标后就用软件语言(比如V...
如何提升固态硬盘SSD的寿命?固态硬盘的寿命是可以提升的,提升的依赖主要是针对NAND闪存介质进行提升和优化。因为在SSD内部有三块区域,一个是SSD控制器,一个是DRAM缓存,最后一个是NAND闪...
国产手机中有哪些零件是国外的,华为cpu也并不是完全国产?思博伦:美国,通信测试仪表及测试方案供应商,提供验证测试业务。迅达科技:美国,北美第一全球前十的印刷电路板制造商,供货内容:提供PCB及相关产品。新思...是德...
德国的半导体工业实力如何?没有比较,就没有评判的标准,要看德国的半导体工业实力,就一起看看全球顶尖的国家的半导体实力。先来看看荷兰、法国、德国、英国、日本等地的半导体行业发展情...
pbb格式可以转换为word- 汇财吧专业问答[回答]word的上下页边距不见了应该是隐藏了页边,可以通过以下方法恢复:1,在页面视图下,页和标尺(如果未显示标尺则是页的上边缘)之间有一条灰色带;2,鼠标...